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Two simple distribution-free tests of goodness of fit
by

%« ¥We. Birnbaum and Victor Kuang-Tao Tang

Summary.
M If ¥ has “he continuous cumulative distribution furction I

and Xy, XE""’ X, is a sample of X then each of the two

n
statistics T = % E%_F(Xj) and, for n odd, U' = mediaa of

J::
[F(Xl),uong(Xn)] has a probability distcibution indepsndent of PF.
Tests of goodness of fit based on these statistics are yroposed,
some numerical tables are presented, and power and consistence of

the tests are discussed. §

1- Introduction.
l.1. Basic concepts.
Let 5} and gL' be two families of cumulative distribution

functions. A real-valued functicn
3%y s Koyeee, ¥, G)

is called a gtat:stic in $4 with regard to Sl' when for evepry

3 e and every F 2CU* the following requirements are fulfilled:
if Xl’ Xg,---, Xn are identically independently distributed (i.i.4.)

randem variables with the c¢.d.f. F ¢then

(1) S(Xl, Xpgevey X9 G) is defined except for a set of
probability zero in (Xl,  CTRRED Xn), and
(ii) W = S(Xl, Togeooy Xps ¢:) has a probability distribvution,

vhich will e dsnoted Ty




PES(}:l' X2’°'°’ an, G) ; .F] = P(“Ji F)°

For exanple, ccnsider Xl v Xz,,o.., Xn i.i.4d. with probability
density N(a, 0‘2), and let S% = &4 be the family of all normal
digtributionss. Then

N 10

Wos 8(X.p00e, Xpy G) = (Hii:lxi - B (X)) / Gg(X)
is a statistic inJL w.r.t. 52"-

IZ 6% = £L° and the statistic S(Xys Xpsres X » G) hes the
piroperty thaf: the probability distrivution '.?[S(Xl, Towreey o G); GJ
is independent of G for G e¢d{i , then the statisuic

G) 1is called distribution-free wi‘h regard to &

S(le Xgi“' c Xna

(dof oW oG lgl ).

1.2 Stabistiics of structure (d)«
A statistic S(X); Xgyeeey X,

with respec%h to §% if there exists a function <p(u‘.l s Uppeony un) such

G) 1is said o hove gtructure (d)

that, for every G € i,
S(Xlo X:.,n»-, Xni G) 2 47[‘3()5_','” G(Xg)*)"“‘l G(Xn‘}°

We shall from now on denote b;,’-,('.-u‘b 2 the class « £ all continuous
one-dimenaivurcl cumulative distri’bu‘bio;u functions. '‘he following
theorem wili be repeatedly used.
1e2e1e Theore'na") A statistic of -tructure (d) is d:stribution
free werete. S ne
2. The ¥ cstatissic.

2.1 Definii:ions and basi: properties of tae statisics ¥ and U::,e

e Ly 2:’.2,,-»“.} Xn iz a sample of & ravdoa vaziable X -

Y. S S T SRR AL R o )

[
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which has the c.d.f. F €Sk, them Uj = F(X)),+:, Uy = F(X,)
form a sample of the random varisble U with uniform distribution
on (0,1). Since E(U) =% and G 2(U) « g5, it follows that the
¥ statistic defined by

(2:1.1) ¥F.lzrx,)
20101 5 - 8 F X
0.y i
has the expectation and variance
. 1 2 1
(2:1.2) E(F) = =, G (F = =5 °
We standardize ¥ and obtain the statistic
: on (F - &
(2:1-3) Un =Yy1l2n (F - g)
with expectation and variance
* 2 »
E(Un)- 0, (Un) = Lo

since U, 1is of structure (d), it is by L.2.1 a distribution
free statistic we.r.t. [2 2° Its probability distribution can be
calculated exactly for small n by evaluating the convolution of
rn random variables with uniform distribution on (0,1). For

example, for n = 2 one has

252

for 0<s8 < %
(2.1.5) P{F, < s] =

1-201-2)2 for $<sg1.
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hence
};(14--3‘-_1-)2 for -y":é"gus,o
P < V6
(2:1.6)  P{U} < v} =
1 U \e .
1 -~ ?(l - =) for 0 <u <V6.
V6 =

-
According to the central imii theoren, Un vinverges in

distribution to N(O,1) with n - ®, and numerical calculations
have shown that this convergence is so fast that a.ready for n = 8
there is piractically no difference between

u s?
. L -3
P{Un < u} and Q(u) = f—é—u— S e ds .

-0

The statistic U; offers, therefore, the practical advantage
that, if 2 has the given distridbution ¥, the probability distribu-
tion of J; can be computed exactly for n snall, say n < 10, and
frcm then or the normal approximation can be used.

2.2z. The ¥ tests.
2.2:1< The one-~sided test.

Ve consider the hypothesis
H: X has c-defe F(x) e S0,

and the one-sided alternative
A : X has c¢.def. A(x) such that A(x) > F(x)
for gll x

and A(F%) # F(F) for some $§ -

o sarn s prdficance lavel 0 ondoneme oo osire ¢y




U, be 80 determined that
1

(2.2.1.1) P{u, > Up o | P} =,

hence also
(2.2.1.2) P{u, <- Up g | ¥} =a-

We then define as our region of rejection
(2.2:1.3) U. < =1 .

In view of (2.2.1.2) thig test has size o .

2+2.2 Tabulation of critical values up
*
Let X denote a random variable with uniform probability

distribution on (-1, +1), and let

be the mean of a sample of X. A table of the exact values of

P{XA < s} for 8, proceeding by steps af .01, had been previously
computed for n = 2,3.,4,5,6, and 10, and was available. Making
use of this table and of the relationships

U‘%(X‘fl)

Up = {3Exn



the equations

* * un“
P{vg <-u, b =P{u;>u, 1=-2{%> v J=a
were solved by cuadratic inverse interpoletiorn for
o = .05, 029, .01, -005. The results are presented in Table I.
The last row, n = ®, ‘conteins values taken from the normalized

normal distribution.
2+2.3. Lower bound for the power.

We assure that F, G £fl,, and that X has the c.d.f. G,
30 that F 14s the hypothesis and G the alternative. We assume

furthermore that
G(x) > F(x)
(2+2.3.1)

G(%) = F(§) + & for a given f ,

as indicated in Figure 1.

11 //////”’,ﬁi:::;;:=a—-
GlF) b mm s mme e e e e, ------.-/
7

;
FQL - oememe e |

i

§ FEGT)

F.’{r{uhb l. '




e

TABLE 1
Values un’a such that

¥

P{Un’a <-u 1= PfUn’a > un’a} = g
;“‘{- .05 ,025 ,01 .005
2 1.57499 1.90541 2.10318 220454
3 1.66116 1.93737 2.,2170C 2.37861
N 1.65127 1.93969 2.25180 24,4472
5 1.850L7 1.94253 2,26631 2.4,7462
6 | 1.6.945 1.94572 2.276L7 2.,9883
10 . 1.6L764 1.95161 2.29725 2.52692

on 5 lc61+5 lo96 20327 20575
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Yoy
T4

fcr

»

% < %

Srvting Dy g(x) ={FE) + &2 6(%) for g g x < POy

we clear.y have G(
P{P(X) <5 |

(2.2:3.2)

Lf‘

e defive, for

b(s) -

Is
.

(P (6))

+ b

F( :"_)

x) > L. (%)

s}

£

L]

[4

7 y &> 0 and
for
for

Lor

for 811 x,

F(f) + 6 = G(§) for

for F('l)(G(y)) < x

and co.acluve

P{x < F('l)(s) | g} = a(pC sy >

for 0 £ & < F(§)
F(§) < 8 < G(%

for G(§) < s <1,

"l+6<1’

0L 3K 7

753("/4-6
v o+ 6 <s<1,

as indicated in Figure 2 and then rewrite (2.2-3%3.2) in the form

£.r%.3)

P {F(X) <8 | G} > A7,6(8)’ where

o= F(F), v+ b = G(f)-
1 p
5
)
/ e
{( - 17 7-1: i A

el uak pR




Since the tesv statistic U; is monotone in the sense of
Chapman [2] and has structure (d), it follows from a theorem in
{21, p- 657, that the power of test (2.2.1.3) of rypothesis F

against zlternative G 1is greater than or equal to 1its power of

F against alternavive L§ B and that this latter power is a |
*

sharp lower tound for the power for given 7 = F(§) and 45+ & = G(F)- i

Without loss of generality we may now replace F(x)by the
uniform cistribution R(s) on (0,1) and L?’a(x)by the distribution
function A7,b(s) on (0,1). The power of our test of R against
A7,6 will be the lower bound foxr its power for F against G such
shat F(s) £ G{s) for all real G, and F(§) =+ and
G(§) = F(f) + & for some § .

While it is difficult to compute the exact pcwer for finite
sample size n of the F-test for hypothesis R sgainst alternative
‘i7,6’ the asymptotic power for n - ® cen be easily computed in thes
Following mannar.

The expectetion and variance of X under the alternative are
. 1 2
E(X; A, 5) = 5(1 - 89)
(2:203.4,
2. 1 2, 1.2 1:35 1.4
T3 Ay ) = 5 =90 + 37 - 367 - 35"

The statistic U; has therefore under the altern:ztive expectation

and varianca
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E(Ups Ay 5) = - VI 87

(2.2.3.5)

T3 ; Ayg) = 1= 12987 + 667 - 487 - 384 .

According to the central limit theorem U: is asymptotically

normal and in view of (2.2.3.5) we have

*
+ V3n & :
(2.2.3.6) 1lim P < 8; -"-,,,5}

o (i 12752+ 66% - 4,57 - 38*

1)’"
— e
LI #°S
For 8 = O one has A_ . = R, (2.2.3.6) becomes
T
2
v F

limP{U <s,R} -1 [e
n-co vam .

dt

=00
and, for u . determined by (2.2.1.2) one has
?
n,a _ %3
a=lmP{Uf<-u jRj=1im L e ¢ at
n-oo ’ n-+ Van
-00

so that 1lim (- ) = -3
n-00 “n Qa a ?




~lle

+00 t2
1 -2
with —— e dt = a .
J2ﬂ j’
%
a

For 6 > 0 and wu, , determined by (2.2.1.2) one obtains
H

from (2.2.3.6)

£
lim P{VU < - ; A
Lin P{U, < - uy o b o)

U: + \3n & “u .t V3n 6
= lim P < — ; A
N~ {\/1-12,75"2 662-453- 36F  \1-12n8%+ 682~ 463 36% 7»‘}

b
n 2
- lim i eg_dt.*-l
n-oo \2n
-
where

b = m%.a + JB-;; 5
n L]
V 1c1276%+ 68%- 463~ 38

This expression for the asymptotic power of our test against

A7 5 Shows that the test is consistent against every '
»

one-sided alternative.

The results of this and of the next section are not
new. Equivalent statements have been obtained by Chapman
[2, expressions (46), (47)], who reports that the test

discussed here has been previously proposed by L. E, Moses.




2.,2.4. Upper bound for the power,

By an argument similar to that in the preceding section,
one can show that if the test (2.2.1.3) is applied to the
hypothesis F and the alternative G in (2.2.3.1) its
power i3 not greater than it is when that test is applied
to hypothesls I and the alternative.

(202ak01) Mg(x) = min{ F(x) + 5, 1] ;

which ascribes the discrete probability & to the value
-0 . Without loss of generality one may replace F and

Mg Dby the uniform distribution R(s) on the unit interval

and the distribution _
' 0 for s <0

(2.2.402) Bgls) = \s +6 for0<s<1-=-5%
el for 1 -586<s
respectively, so that the power of our test for R against

By 1s the upper bound for its power for any F in J1.2

against an alternative (2.2.3.1). Again, we derive an

asymptotic expression for the power for R against Ba, by

comput ing

E(X; B,) = (1 - 8)?

y Py 14 =

(202443)

T2(x; Bg) = 3501 - 8)3(1 + 38,
hence

E(U:; By) = - {Ins(2 - 3)
(2:20404)

T2(u7; By) = (1 - 8)°(1 + 38)
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. #
and observing that Un is, under alternative Bé,

asymptotically normal with expectaticn and variance
(2.2.4.4). The power of the test (2.2.1.3) for R against

By, 1is therefore for large n asymptotically

6
1 -
— d
mfe y
Q0
where
-%\B-ﬁé(z-&) .

C
D (1 -8) V(L -8)(1+ 38)

2.2.5. The two-sided F-test.,
‘We consider a hypothesis F e(].z and an alternative

¢ :

29 and agree to reject F when

(2.2.5.1) 7l > Upg -

From (2.2.1.1) and (2.2.1.2) follows that (2.2.5.]) defines
a test of size «.
To study the power of this test we consider the

expectation and the variance of F(x) under the alternative

G
+00

E;(F) = I F(x)dG(x)
-00
+00
Ta(F) = J F2(x)dc(x) - E3(F),

=00



make the assumption
0 < [A(F) < oo
and note that
Be(F) =3, (2(F) =35 .
By virtue of the central limit theorem the random variable

F- E, (F)
-dr-(pT——G Vo

tends in distribution to the normalized normal random
variable,

In view of (2.1.3) and (2.2.5.1) we have

P (IU’:;I < unD%;G} = P{\/Exl? - %I < un’%; G} -

~ p {ViZa|F - Eg(F) - (3 - E(F)] | < Un 83 6] =

Ym[% - Eg(F)) - wy g F - EG(F) VIZn[g - E(F) I+ u, g
2= \/ﬁ < ——
iz 15 (F) g (F) iz @,(F)

and this is asymptotically equal to

b
.y gn e-% ds
Van

n

: )
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where 1
Vizn(z - B,(F)] - 2,
_2
&, = V12 Ub(F)
(2.2.5.2)

\/i.2-n[~2]= - EG(FH + 2,
b, = 2
Viz (g (F)

and Zy is such that
2

@ 8
= [ a5,
F3

. *
From (2.2.5.2) one concludes that P {lUnl < un;%” G}* 0
with n - oo for every alternative G such that
(2.2.5.3) Eg(F) # 3,

so that the two-sided F test (2.2.5.1) is consistent against

every alternative G € f7-2 satisfying (2.2.5.3).

3, The median-F statistic.

3,1 Definitions and basic properties of the statistic M2m+1°

Let Xy, X5 °¢°y Xopg be a sample of size 2m+l

(an odd integer) of a random variable X which has c.d.f.
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! soo0 seo £ )
Fe{l,, and X]<Xy<eeo<Xt,, < <Xy ., the
corresponding ordered sample, so that X&+1 is the
sample-median, Then

U] = FX{D, Uy = FXY), o0, Uy = F(KL), 00Ul = FRpy)

is an ordered sample of a random variable U which has

uniform distribution on (0, 1), and U!,, the median of

that sample. It 1s well known that U! has thé c.d.f.

m+).
7 B_(m+1,m+l)
+1 ,mt
(3°1.l) P{Ur;l.‘.l S s} ] L%ni!)—)—lz'.- g um(l - u)mdu - smT —
m E( I’ I)
o]

where B and Bs are the beta-function and the incomplete

beta-fanction, that thercefore

(3.1.2)  E(Ul,,) =%, T2U,,) = m xJ?.+'IT ’

and that the normalized random variable

= 3 l = 3 3 { = ;
(3.1.3) M, ., = 2VZmFl (U} ; - F) = VamFl[K(X},,) = 5]

converges in distribution to the normalized normal variable.

The statistic M, ., defined by {3.1.3) offers obvious

advantages in practical use: 1) it is a statistic of

structure (d), hence is distribution-firee w.r.t..(lz,

2) if X has c.d.f. F then the probability distribution
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of M2m+l can be computed exactly for m sewall <rom
(3.103) and (3.1.)) by using available tables of the
incomplet.e bheta--function; 3) for m large the probability
distribution of M2m+l is approximated by the normalized

)
normal distribution; k? the statistic Mym+y 18 easily

.

computed for given sample X ove X ani given 7 |

1’ 2+l

since all one has to evaluste (o even only to know) is
1 p s . [} . : 1
the sample median X!, end the value F(Xm+l) o

3,2, The median~F tests.

3.2.1., The one-~sided test.
To test the hypothesis H against the alternativs A

des¢ribed in 2.2.1., we determine }}1q so that
ly

(3.2,1.1) P { M2m+1 < = Y myaz = P { M2m+L:$ (nnuz = g

and reject H when

(3:20102) M2m+l < = r moa ©

LY

“his test ¢learly has size ¢ ,

3.3.2, Tabulation of critical values .}nxa N
My G

To obtain solutiocns '?h o °f ecuation 13.2.1.1), this

equation may be written 3in the form

- Y m.a
P{l‘42m+1> Xm a} mP{,L;h+l>._4_.T...

Ry zv2m*1

4
Noab
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which, under the hyvotnesis, and in view of (3.l.1) is

pm— ]

aquivalent with

Y

e %

2V

(3.2.2.1) s gl [\ &% = 100
{mi)}"™ j
0

é voee o given sa ple size 2ol and sipgnificance level o

4 j . :
Lhe value “Lad w3 lar we ostuined by inverse
——lad :.

~Aterpla. town trm the Tibawn of Lhe Inco. clete beta

“+

Funesion b te values piegreared In “ebde 11 were caloulated

”

By udsing Daarong.ts drves, (1 ien faaas of cegres 4 and

seivirg o o resalting eoaziion by Newtoa'es fethod,

!
E
]




Values & n,

PMopey < i'tn,an} = PMypyy > 3'm,ez} s

-i9e

TABLE IIX

a

such that

\\ «

2m-+\1\\ .05 .025 .01 005
19 1.56845 %.84257 2.14498 2.3398¢€
29 1.59396 1.88u.2 2.20428 2.41629
39 1.60670 1.90094 2.23437 2.45539
49 1.,61435 1,91268 2,25255 2.47899
59 1.61943 1452054 2.264,70 249486
69 1.62308 192615 2.2731 2,50633
79 1.62579 1.93036 2.27995 2,51480
89 1.62793 1.93363 2.28510 2,52140
99 1,62952 1.93626 2,28906 2,52677
® 1.6L5 1.96 2.327 2,575
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3.2.3. Consistence of the median-F test.

Let the hypothesis F and the alternative G both

be in (),, and let their medians be

(3.2.3.1) e = FU ) [ =6V id)

The probability of rejection when test (3.2.1.2) is used is

P{Mypey < =¥, I6] = P2 VERL [r(xy,) - 31 <=, lo} |

LW |

- p{ax:) <otr-Vd - e} .
Ve define
=ofrl- g - X,;-‘:ﬁ— )]
(3:2.3.2)

Y=otr Vi - ua W,

Since, under alternative G, the random variable G(X)
has uniform distribution on (0, 1), the random variable
G(X

a uniformly distributed random variable and by a well-known

&+1) is the median of a sample of size 2m + 1 of such

theorem (e.g. [3] p. 369) has asymptotically normal distribu-
tion with expectation % and variance ERE%FET o« The
probability of rejection is therefore asymptotically



(¥, - 3)2VZorl
L -2
¥ :lo ] 8 .

if Y>% y we have (Vi -%) 2VZm¥l » + oo with

m+o00, and since Y>% is equivalent with Hp > g

we conclude that test (3.2.1.2) is consistent for every
alternative G such that uo < Bp o

3.2.4. Lower bound for the power

Using the assumptions and notations of 2.2.3 and noting

that the statistic M2m+1 is monotone and has structure

(d), we conclude as in 2.2.3 that a sharp lower bound for
the one-sided test defined by (3.2.1.2) for given 7 and

§ is obtained by choosing as hypothesis the uniferm c.d.f.
R(s) on (0,1) and as alternative the c.d.f. A7o5(8)
defined in 2.2.3. Again, the exact power in this case for
finite sample size appears to be difficult to compute,but
an asymptotic expression can be obtained as follows.

If the random variable V has the c.d.f, Aqq 5(8),
’

and V], V4, ceoy Viiysoees V3py; 18 an ordered sample of V,

then the sample median V:'n+1 has the c.d.f.




2m+l
£ (z?fl)vi(l - v)2mtl-l oo 0sv<y
i=m+l

2w+l
P{Vi, S VIA,M} - 12 1( T 7+ 8)H(1-7-8)<" forys v p +8
=t

2m+1
: CThvia - Pt eryrs <.
fmm+1

Since now (3.1.3) becomes
- 1
Moy = VL (Vg - P
vwe obtain for the power of the test (3.2.1.2) the expression

1 7
P {M2m+1 <- ym,a‘A?],é} =F fV,;,ﬂ <%- ﬁrﬁﬁ" 'A’M?

if n<%<n+6,tMnmubwmu

2m+l
- 2m+l i 2m+l-i
P {M2m+l <- rm,G‘A’L&? 18 +1( 1 17+ 8712 -n-38)
-

and this, for m -+ oo, 1is asymptotically equal to

00 2
2 [T
(3920‘&01) 4.2—" f. da
dy
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where

dm,ml- + .
(2m+1) (p+ 8) (L -7 =~ 3)

It is clear that for m + oo the expression (3.2.4.1) tends
to 1 when ’7+6>% and to O when ’V)+6<% .

3.2.5. The two-sided median-F test,

The test with the region of rejection defined by

(3.2.5.1) Mopey ! > Ym,%
clearly has size a , so that the values under headings .025
and .005 in Table IT may be used to apply the two-sided test
(3.2.5.1) on tha .05 and .01 levels of significanze. An
argument analogous to that in section 3.2.3 shows that, for
hypothesis F and alternative G both in {),, this test
is consistent if ug ¥ By °
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